Monomers

DGEBA

../../../_images/DGE-epoxy.png

Bisphenol A diglycidyl ether, which we refer to as DGEBA for historical reasons, is an epoxidized form of bisphenol A (BPA). Here we’ll consider how to build the input .mol2 file for DGEBA. It is quite easy to generate a 3D structure from a SMILES representation. The canonical SMILES string for DGEBA is:

CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4

However, as described in the user guide, HTPolyNet uses the concept of “sacrificial hydrogens”: any two atoms designated as forming a bond must each sacrifice one H atom to make the bond. Epoxy groups react with amines via hydrogen atom transfer from the amine to the oxirane oxygen, generating a C-N bond and a pendant OH group one carbon atom removed from the C-N bond. So the N sacrificed but the C did not; it “sacrificed” its bond to the O atom of the oxirane. To use DGEBA as a reactive monomer, we therefore must convert it to a form in which the two oxiranes are hydrogenated, yielding a terminal methyl group and a pendant OH one atom removed from the methyl. This is easily done by altering the C2CO2 and C4CO4 epoxirane cycles in the original SMILES string to C(O)C methyl hydroxymethyl groups, yielding:

CC(C)(C1=CC=C(C=C1)OCC(O)C)C3=CC=C(C=C3)OCC(O)C

Using OpenBabel (or any of a variety of molecular builders), we can generate a baseline 3D structure of DGEBA in .mol2 format at the command-line, referring to it as “DGE” (three-letter monomer names are customary, though not required; they need only be unique identifiers):

$ echo "CC(C)(C1=CC=C(C=C1)OCC(O)C)C3=CC=C(C=C3)OCC(O)C" | \
       obabel -ismi -h --gen3d -omol2 --title "DGE" | \
       sed s/"UNL1   "/"DGE    "/ > DGE-raw.mol2"

Note that we have used sed to change the generic residue name UNL1 provided by obabel to our desired name DGE. At this point, although this is a valid *.mol2 file, it is not yet ready for use by HTPolyNet. It needs two fixes:

  1. Reactive atoms must be uniquely named; and

  2. Any chiral carbons must also be uniquely named.

To understand how to make these fixes, we should visualize the molecule:

../../../_images/DGE-labelled.png

This image was made with VMD, and you can see that four carbons and two oxygens are labelled. The numbers refer to internal atom indices assigned by VMD, which begins counting at zero. These correspond to the atom indices in the *.mol2 file, which begins counting at 1. So the atoms labelled 13 and 24 are atoms 14 and 25 in DGE.mol2; these are the two “reactive” carbons because each can bond to an N of an amine. Furthermore, since oxirane opening usually generates a chiral carbon, we indeed see that the atoms labelled 11 and 22 are both chiral centers, and both in S; these of course are atoms with the indicies 12 and 23 in DGE.mol2. Finally, since we will ultimately want to convert any unreacted epoxies back into oxirane rings, we need to specify the relevant oxygen atoms; these are atom with VMD-indices 12 and 23, which are 13 and 24 in DGE.mol2 file.

Let’s edit DGE.mol2 to name the two reactive atoms C1 and C2, the two chiral atoms at C3 and C4, and the two oxirane oxygens as O1 and O2:

$ cat DGE-raw.mol2 | sed s/"14 C "/"14 C1"/ | \
                     sed s/"25 C "/"25 C2"/ | \
                     sed s/"12 C "/"12 C3"/ | \
                     sed s/"23 C "/"23 C4"/ | \
                     sed s/"13 O "/"13 O1"/ | \
                     sed s/"24 O "/"24 O2"/ > DGE.mol2

Note that in the sed substitution directives, we have preserved the number of characters substituted to keep the column spacing in the *.mol2 file from changing.

Now, let’s take a look at DGE.mol2:

@<TRIPOS>MOLECULE
DGE
53 54 0 0 0
SMALL
GASTEIGER

@<TRIPOS>ATOM
      1 C           0.9601    0.0682    0.1490 C.3     1  DGE        -0.0517
      2 C           2.5158    0.0610    0.0695 C.3     1  DGE         0.0151
      3 C           2.9888    0.3744    1.5227 C.3     1  DGE        -0.0517
      4 C           3.0435   -1.3437   -0.3149 C.ar    1  DGE        -0.0372
      5 C           2.2654   -2.2043   -1.1002 C.ar    1  DGE        -0.0543
      6 C           2.6154   -3.5414   -1.2810 C.ar    1  DGE        -0.0197
      7 C           3.7559   -4.0699   -0.6824 C.ar    1  DGE         0.1206
      8 C           4.6062   -3.2065    0.0069 C.ar    1  DGE        -0.0197
      9 C           4.2621   -1.8570    0.1708 C.ar    1  DGE        -0.0543
     10 O           4.1011   -5.3998   -0.7036 O.3     1  DGE        -0.4894
     11 C           3.1002   -6.2627   -1.2708 C.3     1  DGE         0.1151
     12 C3          3.4888   -7.7350   -1.1214 C.3     1  DGE         0.0864
     13 O1          4.7488   -7.9743   -1.7458 O.3     1  DGE        -0.3887
     14 C1          3.5559   -8.1826    0.3300 C.3     1  DGE        -0.0357
     15 C           2.8918    1.1840   -0.9221 C.ar    1  DGE        -0.0372
     16 C           3.0523    2.4988   -0.4592 C.ar    1  DGE        -0.0543
     17 C           3.2536    3.5679   -1.3257 C.ar    1  DGE        -0.0197
     18 C           3.2961    3.3733   -2.7046 C.ar    1  DGE         0.1206
     19 C           3.1537    2.0763   -3.1940 C.ar    1  DGE        -0.0197
     20 C           2.9490    0.9932   -2.3162 C.ar    1  DGE        -0.0543
     21 O           3.4565    4.3802   -3.6269 O.3     1  DGE        -0.4894
     22 C           3.5239    5.7006   -3.0598 C.3     1  DGE         0.1151
     23 C4          3.6692    6.7696   -4.1450 C.3     1  DGE         0.0864
     24 O2          4.8809    6.5708   -4.8717 O.3     1  DGE        -0.3887
     25 C2          2.4996    6.7855   -5.1148 C.3     1  DGE        -0.0357
     26 H           0.5945   -0.7080    0.8319 H       1  DGE         0.0241
     27 H           0.4870   -0.0914   -0.8267 H       1  DGE         0.0241
     28 H           0.5820    1.0321    0.5106 H       1  DGE         0.0241
     29 H           2.7964   -0.4694    2.1962 H       1  DGE         0.0241
     30 H           2.4602    1.2314    1.9559 H       1  DGE         0.0241
     31 H           4.0596    0.6067    1.5647 H       1  DGE         0.0241
     32 H           1.3436   -1.8695   -1.5669 H       1  DGE         0.0622
     33 H           1.9409   -4.1449   -1.8761 H       1  DGE         0.0654
     34 H           5.5227   -3.5875    0.4515 H       1  DGE         0.0654
     35 H           4.9462   -1.2317    0.7348 H       1  DGE         0.0622
     36 H           3.0235   -6.0384   -2.3413 H       1  DGE         0.0722
     37 H           2.1344   -6.1066   -0.7734 H       1  DGE         0.0722
     38 H           2.7427   -8.3440   -1.6445 H       1  DGE         0.0624
     39 H           5.3392   -7.2529   -1.4565 H       1  DGE         0.2099
     40 H           4.3393   -7.6508    0.8786 H       1  DGE         0.0256
     41 H           3.7994   -9.2493    0.3821 H       1  DGE         0.0256
     42 H           2.5983   -8.0235    0.8364 H       1  DGE         0.0256
     43 H           2.9907    2.7425    0.5967 H       1  DGE         0.0622
     44 H           3.3496    4.5491   -0.8758 H       1  DGE         0.0654
     45 H           3.1775    1.8944   -4.2680 H       1  DGE         0.0654
     46 H           2.8110    0.0055   -2.7501 H       1  DGE         0.0622
     47 H           4.4071    5.7580   -2.4113 H       1  DGE         0.0722
     48 H           2.6102    5.9083   -2.4888 H       1  DGE         0.0722
     49 H           3.7417    7.7485   -3.6575 H       1  DGE         0.0624
     50 H           4.9306    5.6173   -5.0723 H       1  DGE         0.2099
     51 H           2.4413    5.8552   -5.6885 H       1  DGE         0.0256
     52 H           2.6246    7.5977   -5.8389 H       1  DGE         0.0256
     53 H           1.5529    6.9377   -4.5866 H       1  DGE         0.0256
@<TRIPOS>BOND
      1     1     2    1
      2     2     3    1
      3     2     4    1
      4     4     5   ar
      5     5     6   ar
      6     6     7   ar
      7     7     8   ar
      8     8     9   ar
      9     4     9   ar
     10     7    10    1
     11    10    11    1
     12    11    12    1
     13    12    13    1
     14    12    14    1
     15     2    15    1
     16    15    16   ar
     17    16    17   ar
     18    17    18   ar
     19    18    19   ar
     20    19    20   ar
     21    15    20   ar
     22    18    21    1
     23    21    22    1
     24    22    23    1
     25    23    24    1
     26    23    25    1
     27     1    26    1
     28     1    27    1
     29     1    28    1
     30     3    29    1
     31     3    30    1
     32     3    31    1
     33     5    32    1
     34     6    33    1
     35     8    34    1
     36     9    35    1
     37    11    36    1
     38    11    37    1
     39    12    38    1
     40    13    39    1
     41    14    40    1
     42    14    41    1
     43    14    42    1
     44    16    43    1
     45    17    44    1
     46    19    45    1
     47    20    46    1
     48    22    47    1
     49    22    48    1
     50    23    49    1
     51    24    50    1
     52    25    51    1
     53    25    52    1
     54    25    53    1

You can see that only C1-C4 are uniquely named. Those unique names will persist forever in HTPolyNet in any system derived from this DGE input file. Other atoms will acquire unique names through processing with AmberTools, but that won’t concern us here.

PACM

../../../_images/PAC-2d.png

4,4-diaminodicyclohexylmethane, referred to colloquially as PACM (“pack-em”), is a common hardener in epoxy formulations. Since it has two primary amine groups, it can bond to at most four distinct epoxide groups. The SMILES string for PACM is:

C1CC(CCC1CC2CCC(CC2)N)N

Just as we did with DGEBA, we can generate a structure for the “PAC” monomer:

$ echo "C1CC(CCC1CC2CCC(CC2)N)N" | \
       obabel -ismi -h --gen3d -omol2 --title "PAC" | \
       sed s/"UNL1   "/"PAC    "/ > PAC-raw.mol2

Since we know PACM has two primary amines, we don’t need to convert it to a form with sacrificial H’s – it already has them. We do, however, need to edit PAC-raw.mol2 to give unique atom names to the two amine nitrogens and the two chiral carbons to which they are attached:

../../../_images/PAC-labelled.png

We see that the two amine nitrogens are atoms 13 and 14 in VMD numbering, which correspond respectively to atoms 14 and 15 in mol2 numbering, so let’s call them “N1” and “N2”, respectively. The carbon atom 11 (10 in VMD numbering) to which our “N1” is bound can now be called “C1”, and the carbon atom 3 (2 in VMD) to which our “N2” is bound “C2”.

$ echo PAC-raw.mol2 | sed s/"14 N "/"14 N1"/ | \
                      sed s/"15 N "/"15 N1"/ | \
                      sed s/"3 C "/"3 C1"/ | \
                      sed s/"11 C "/"11 C1"/ > PAC.mol2

Let’s look at the file PAC.mol2 that results from the command above:

@<TRIPOS>MOLECULE
PAC
41 42 0 0 0
SMALL
GASTEIGER

@<TRIPOS>ATOM
     1 C           1.0203    1.1686   -0.4045 C.3     1  PAC        -0.0488
     2 C          -0.3868    1.4530    0.1332 C.3     1  PAC        -0.0375
     3 C2         -0.4239    1.5867    1.6509 C.3     1  PAC         0.0049
     4 C           0.2189    0.3673    2.3129 C.3     1  PAC        -0.0375
     5 C           1.6627    0.1840    1.8377 C.3     1  PAC        -0.0488
     6 C           1.7559    0.0170    0.3181 C.3     1  PAC        -0.0407
     7 C           3.2445   -0.0611   -0.1651 C.3     1  PAC        -0.0474
     8 C           4.0849   -1.2509    0.3999 C.3     1  PAC        -0.0407
     9 C           5.5341   -1.2664   -0.1535 C.3     1  PAC        -0.0488
    10 C           6.3098   -2.5522    0.1636 C.3     1  PAC        -0.0375
    11 C1          5.4974   -3.8029   -0.1700 C.3     1  PAC         0.0049
    12 C           4.1937   -3.8000    0.6212 C.3     1  PAC        -0.0375
    13 C           3.3524   -2.5924    0.2247 C.3     1  PAC        -0.0488
    14 N1          6.2599   -5.0172    0.1162 N.3     1  PAC        -0.3272
    15 N2         -1.8168    1.7369    2.0786 N.3     1  PAC        -0.3272
    16 H           1.6047    2.0898   -0.3424 H       1  PAC         0.0268
    17 H           0.9019    0.9202   -1.4627 H       1  PAC         0.0268
    18 H          -1.0564    0.6483   -0.1927 H       1  PAC         0.0280
    19 H          -0.7633    2.3773   -0.3343 H       1  PAC         0.0280
    20 H           0.1247    2.4885    1.9532 H       1  PAC         0.0458
    21 H          -0.3534   -0.5388    2.0744 H       1  PAC         0.0280
    22 H           0.2067    0.4761    3.4022 H       1  PAC         0.0280
    23 H           2.0776   -0.7078    2.3325 H       1  PAC         0.0268
    24 H           2.2691    1.0366    2.1678 H       1  PAC         0.0268
    25 H           1.2371   -0.9012    0.0434 H       1  PAC         0.0301
    26 H           3.7432    0.8605    0.1294 H       1  PAC         0.0271
    27 H           3.2593   -0.0975   -1.2596 H       1  PAC         0.0271
    28 H           4.1835   -1.0879    1.4730 H       1  PAC         0.0301
    29 H           6.0813   -0.4176    0.2686 H       1  PAC         0.0268
    30 H           5.5482   -1.1352   -1.2427 H       1  PAC         0.0268
    31 H           6.5982   -2.5580    1.2292 H       1  PAC         0.0280
    32 H           7.2463   -2.5515   -0.4099 H       1  PAC         0.0280
    33 H           5.2588   -3.8065   -1.2451 H       1  PAC         0.0458
    34 H           4.3975   -3.7699    1.7048 H       1  PAC         0.0280
    35 H           3.6232   -4.7131    0.4347 H       1  PAC         0.0280
    36 H           2.4417   -2.5989    0.8401 H       1  PAC         0.0268
    37 H           3.0264   -2.7222   -0.8175 H       1  PAC         0.0268
    38 H           6.5386   -5.0249    1.0976 H       1  PAC         0.1185
    39 H           7.1205   -5.0120   -0.4231 H       1  PAC         0.1185
    40 H          -2.3522    0.9246    1.7729 H       1  PAC         0.1185
    41 H          -2.2309    2.5311    1.5900 H       1  PAC         0.1185
@<TRIPOS>BOND
     1     1     2    1
     2     2     3    1
     3     3     4    1
     4     4     5    1
     5     5     6    1
     6     1     6    1
     7     6     7    1
     8     7     8    1
     9     8     9    1
    10     9    10    1
    11    10    11    1
    12    11    12    1
    13    12    13    1
    14     8    13    1
    15    11    14    1
    16     3    15    1
    17     1    16    1
    18     1    17    1
    19     2    18    1
    20     2    19    1
    21     3    20    1
    22     4    21    1
    23     4    22    1
    24     5    23    1
    25     5    24    1
    26     6    25    1
    27     7    26    1
    28     7    27    1
    29     8    28    1
    30     9    29    1
    31     9    30    1
    32    10    31    1
    33    10    32    1
    34    11    33    1
    35    12    34    1
    36    12    35    1
    37    13    36    1
    38    13    37    1
    39    14    38    1
    40    14    39    1
    41    15    40    1
    42    15    41    1

The next thing we consider is how to create the reaction dictionaries necessary to describe the crosslinking chemistry.